Newport News Waterworks - Two water treatment plants - Harwood's Mill WTP (1989) 48 MGD capacity - Liquid Chlorine Feed system using evaporators - Planned conversion to hypochlorite in next 3-5 years during planned plant upgrade project - Lee Hall WTP (2005) 60 MGD capacity - Plant designed in late 1990's; construction began October 1999 - On-site bulk storage sodium hypochlorite feed system 5 ## **Drivers** for Our Conversion to Hypo - Detailed Alternatives Analysis conducted during design - Evaluated several options: - Liquid chlorine (evaporators) - Gaseous chlorine (pressure/vacuum and all vacuum) – multiple cylinders connected - Bulk sodium hypochlorite - On-site generation of sodium hypochlorite - Developed listing of noneconomic and economic factors 6 | AETERNATIVE | ADVANTAGES | DISADVANTAGES | |---|---|---| | Liquid Chlorine System | Requires relatively few ton containers on-line to provide the design dosage. Comparable to the Harwood's Mill system | System requires handling of liquid chlorine under pressure. System requires greater maintenanc due to the need for evaporators Requires a Risk Management Plan per EPA and OSHA regulations | | Chlorine Gas
(Press/Vacuum) | Eliminates the evaporators used in liquid chlorine | Requires the use of a manifold cylinders and shutoff valves to restrict a leak to one ton container only. Requires a Risk Management Plan per EPA and OSHA regulations | | Chlorine Gas (All-
Vacuum) | Offers the greatest safety in that
all pressure piping is eliminated. | Requires handling a number of vacuum regulators during a changeout of cylinders. Requires maintenance of many different gas filters. Requires a Risk Management Plan per EPA and OSHA regulations | | Sodium Hypochlorite
(Bulk Delivery and
Storage) | > Uses conventional liquid chemical handling procedures. | The 12.5% concentration of sodium hypochlorite degrades and can cause problems with valves and gabinding of pumps. | | Sodium Hypochlorite
(On-Site Generation) | Safest alternative requires
handling salt and 0.8% solution
of sodium hypochlorite. | The equipment necessary to genera
the sodium hypochlorite makes this
alternative have higher maintenance
requirements. | #### **Drivers** for Our Conversion to Hypo - Bottom line driver for our utility was safety of staff and neighbors - Break-even costs were reasonable and manageable - Logistics of implementation can be overcome - Currently all neighboring utilities and commercial businesses using chlorine have or are in the process of converting to hypochlorite 13 ## Issues with Hypochlorite Use - Vent, vent, vent!!! - Proper equipment selection, layout, construction orientation is critical - Degradation of hypochlorite from original strength – storage requirements - Materials of Construction of Bulk Storage Tanks and Gaskets - Safety concerns 14 ## **Summary and Conclusions** - Each utility must develop their own listing of economic and non-economic factors and evaluate them systematically; include public input - Hypochlorite is not without issues handling, storage, feeding, etc. - Local factors and regulatory requirements may drive the decision # Thank You for Joining AWWA's Webcast - As part of your registration, you are entitled to a 90 day archive access of today's program. - Until next time, keep the water safe and secure. 31